Sum Functions for Multi-dimensional Arrays
QUBO++ provides two sum functions for multi-dimensional arrays of variables or expressions:
qbpp::sum(): Computes the sum of all elements in the array.qbpp::vector_sum(): Computes the sum along the lowest (innermost) dimension. The resulting array has one fewer dimension than the input array. The input array must have a dimension of 2 or greater.
The following program demonstrates the difference between qbpp::sum() and qbpp::vector_sum():
#include "qbpp.hpp"
int main() {
auto x = qbpp::var("x", 2, 3, 3);
auto y = x + 1;
for (size_t i = 0; i < 2; ++i) {
for (size_t j = 0; j < 3; ++j) {
for (size_t k = 0; k < 3; ++k) {
std::cout << "y[" << i << "][" << j << "][" << k << "] = " << y[i][j][k]
<< std::endl;
}
}
}
auto sum = qbpp::sum(y).simplify();
std::cout << "sum(y) = " << sum << std::endl;
auto vector_sum = qbpp::vector_sum(y).simplify();
for (size_t i = 0; i < 2; ++i) {
for (size_t j = 0; j < 3; ++j) {
std::cout << "vector_sum[" << i << "][" << j << "] = " << vector_sum[i][j]
<< std::endl;
}
}
}
First, an array x of variables with size $2 \times 3 \times 3$ is defined.
Next, an array y is created by adding 1 to every element of x,
and all elements of y are printed.
Then, qbpp::sum(y) is computed and printed.
After that, the qbpp::vector_sum() function is applied to y and the result is stored in vector_sum, which is a two-dimensional array of expressions with size $2 \times 3$.
Finally, all elements of vector_sum are printed.
This program produces the following output:
y[0][0][0] = 1 +x[0][0][0]
y[0][0][1] = 1 +x[0][0][1]
y[0][0][2] = 1 +x[0][0][2]
y[0][1][0] = 1 +x[0][1][0]
y[0][1][1] = 1 +x[0][1][1]
y[0][1][2] = 1 +x[0][1][2]
y[0][2][0] = 1 +x[0][2][0]
y[0][2][1] = 1 +x[0][2][1]
y[0][2][2] = 1 +x[0][2][2]
y[1][0][0] = 1 +x[1][0][0]
y[1][0][1] = 1 +x[1][0][1]
y[1][0][2] = 1 +x[1][0][2]
y[1][1][0] = 1 +x[1][1][0]
y[1][1][1] = 1 +x[1][1][1]
y[1][1][2] = 1 +x[1][1][2]
y[1][2][0] = 1 +x[1][2][0]
y[1][2][1] = 1 +x[1][2][1]
y[1][2][2] = 1 +x[1][2][2]
sum(y) = 18 +x[0][0][0] +x[0][0][1] +x[0][0][2] +x[0][1][0] +x[0][1][1] +x[0][1][2] +x[0][2][0] +x[0][2][1] +x[0][2][2] +x[1][0][0] +x[1][0][1] +x[1][0][2] +x[1][1][0] +x[1][1][1] +x[1][1][2] +x[1][2][0] +x[1][2][1] +x[1][2][2]
vector_sum[0][0] = 3 +x[0][0][0] +x[0][0][1] +x[0][0][2]
vector_sum[0][1] = 3 +x[0][1][0] +x[0][1][1] +x[0][1][2]
vector_sum[0][2] = 3 +x[0][2][0] +x[0][2][1] +x[0][2][2]
vector_sum[1][0] = 3 +x[1][0][0] +x[1][0][1] +x[1][0][2]
vector_sum[1][1] = 3 +x[1][1][0] +x[1][1][1] +x[1][1][2]
vector_sum[1][2] = 3 +x[1][2][0] +x[1][2][1] +x[1][2][2]
The same results can be obtained using explicit for-loops.
However, for large arrays, it is recommended to use qbpp::sum() and qbpp::vector_sum(), since these functions internally exploit multithreading to accelerate computation.